Pd(O)-CATALYZED ELECTROREDUCTIVE CARBOXYLATION OF ARYL HALIDES, $\beta-BROMOSTYRENE\text{, AND ALLYL ACETATES WITH CO}_{2}$

Sigeru TORII,* Hideo TANAKA, Takeshi HAMATANI, Kazuo MORISAKI,

Anny JUTAND,† F. PFLUGER,† and J.-F. FAUVARQUE†

Department of Industrial Chemistry, School of Engineering,
Okayama University, Okayama 700

†Laboratoire de Recherche sur les Macromolecules, U. A. CNRS n° 502,
Universite Paris-Nord, Av. J. B. Clement, 93430 Villetaneuse, France

Electroreductive carboxylation of aryl halides, β -bromostyrene, and allyl acetates has been performed in an aprotic solvent saturated with carbon dioxide in the presence of a catalytic amount of $PdCl_2(Ph_3P)_2$ and/or $Pd(Ph_3P)_4$.

In the previous paper, we disclosed an efficient Pd-catalyzed electro-reductive coupling of aryl halides $1.^{1)}$ In this connection, we proposed a two-electron reduction mechanism which involved dipole inversion of σ -aryl Pd complex 2 and subsequent coupling with aryl halides 1 leading to biaryls 6 with liberating Pd(0) complex and halide ions (route a in Scheme 1). These considerations, in turn, prompted us to investigate a possibility of carboxylation of aryl halides 1 with CO_2 in a similar electroreductive Pd(0)-recycling system (route b).

The electroreductive carboxylation of aryl halides 1 with ${\rm CO}_2$ has received much attention as a promising tool for preparation of arene carboxylic acids 4.2,3) However, most attempts to the direct electroreductive carboxylation of 1 in an aprotic solvent saturated with ${\rm CO}_2$ has proved to be unsuccessful due to the competitive formation of arenes 5 and/or biaryls 6 together with carboxylic acid 4 (10-38%). Recently, Perichon, Fauvarque, and their coworkers have developed an efficient Ni(0)-catalyzed electroreductive carboxylation of 1 with ${\rm CO}_2$ in a THF-HMPA-(Hg pool cathode) system, affording 4 in 40-87% yield. 3

Pd(0)
$$\begin{array}{c} Pd(0) \\ Pd = 2 \end{array}$$

$$\begin{array}{c} Pd(0) \\ Pd = 2 \end{array}$$

$$\begin{array}{c} P$$

170 Chemistry Letters, 1986

We now found that the Pd(0)-catalyzed electroreduction system was applied successfully to the carboxylation of aryl halides 1 and the carboxylation of vinyl bromide 7 and allyl acetates 10 and 13 was also performed in the analogous electroreductive media.

As a preliminary experiment, we carried out cyclic voltammetry on PhPd(II)Br(Ph $_3$ P) $_2$ and PhPd(II)Br(Ph $_2$ PCH $_2$ CH $_2$ PPh $_2$) 2 (R = H; X = Br) in THF , showing the characteristic reduction peaks (Fig. 1). When the Pd(II)-complexes 2 in THF containing Bu $_4$ NBF $_4$ (0.1 M) were electrolyzed at -2.4-2.9 V vs. Ag/Ag $^+$ with Hg-pool cathode under bubbling CO $_2$, carboxylic acid 4b (R = H; 74-80%) was obtained. These results spurred us to investigate Pd-catalyzed carboxylation system (route b in Scheme 1).

V vs. Ag/Ag^+ ($AgC10_4$ in THF)

100 mV/s with Au electrode (3.14 mm²) A: $PhPdBr(Ph_3P)_4$, 4 x $10^{-3}M$ B: $PhPdBr(Ph_3PCH_2)^2$, 4 x $10^{-3}M$

Fig. 1

The Pd(0)-catalyzed electroreductive carboxylation was carried out in a divided cell fitted with Pt anode and Pb or Pt cathode (3 cm² each). A typical procedure (entry 1 in Table 1) is as follows. A DMF solution of Et₄NOTs (400 mg/7 ml) was charged into both the anode and cathode chambers. After bubbling of CO₂ gas into the catholytes for 30 min, 4-t-butyliodobenzene 1a (R = But; X = I, 0.3 mmol), Pd(II)Cl₂(Ph₃P)₂ (14 mg, 0.02 mmol), and Ph₃P (14 mg, 0.04 mmol) were added to the cathode chamber. Under continuous bubbling of CO₂ gas, regulated dc power at 2.5 mA/cm² was supplied until most of the starting material 1a was consummed (5.3 F/mol). Usual workup of the catholytes afforded desired carboxylic acid 4a (85%) along with a small amount of t-butylbenzene 5a (5%), while no detectable amount of 4,4'-di-t-butylbiphenyl 6a (R = p-But) was isolated.

In place of the Pd(II) catalyst and Ph $_3$ P, Pd(0)(Ph $_3$ P) $_4$ was used successfully (entry 3). ⁴⁾ The presence of Pd(II) or Pd(0)-catalyst was indispensable for the preferential formation of **4a**, otherwise substantial quantity of **5a** (45%) was formed together with **4a** (38%). The proper choice of the cathode material is also significant for the carboxylation of **1a**, since the yield of **4a** decreased, depending on the employed cathode materials in the following order: Pb (85%) > Pt (78%) > Cu (76%) > Stainless (56%) > Ni (46%) > C (38%).

The results and conditions of the electroreductive carboxylation of aryl halides $\mathbf{1a}$ - $\mathbf{1i}$ are summarized in Table 1. The carboxylation of aryl iodides $\mathbf{1}$ (X = I) and aryl bromides $\mathbf{1}$ (X = Br) proceeded smoothly to give the corresponding carboxylic acids $\mathbf{4}$ in good yields, whereas aryl chloride $\mathbf{1e}$ gave no appreciable amount of $\mathbf{4e}$ (R = $\mathbf{Bu}^{\mathbf{t}}$) (entry 7). This fact would be ascribed to the difficulty in accumulation of enough σ -aryl Pd complex $\mathbf{2}$ (X = C1) in the electrolysis media. Notably, biaryls $\mathbf{6}$ were not isolated in any entries in Table 1. Therefore, in the electrolysis media saturated with CO_2 , σ -aryl Pd complex $\mathbf{3}$ seems to react with CO_2 (route b in Scheme 1) in preference to aryl halide $\mathbf{1}$ (route a).

Table 1. Electroreductive Carboxylation of Aryl Halides

Entry	Aryl halides	Catalyst ^{a)}	Cathode	Electricity	Product	yield/% ^{C)}
				F/mol	4	<u>5</u>
	$R \longrightarrow X$					
1	\underline{la} (R = Bu ^t ; X = I)	Pd(II)	Pb	5.3	85	5
2	$\underline{1a}$ (R = Bu ^t ; X = I)	Pd(II)	Pt	3.0	77	12
3	\underline{la} (R = Bu ^t ; X = I)	Pd(0)	Pb	4.3	76	15
4	$\underline{1b}$ (R = H; X = I)	Pd(0)	Pt	3.0	92	
5	\underline{lc} (R = OMe; X = I)	Pd(0)	Pt	3.5	82	
6	$\underline{1d}$ (R = OMe; X = Br)	Pd(0)	Pt	4.5	47 ^{d)}	
7	$\underline{1e}$ (R = OMe; X = C1)	Pd(0)	Pt	4.5	e)	
8	$\underline{1f}$ (R = C1; X = I)	Pd(0)	Pt	4.5	66	
9	$\frac{1g}{\log n}$	Pd(II)	Pt	5.2	80	
10	$\langle \mathcal{I} \rangle^{\mathrm{I}}$	Pd(0)	Pt	3.0	76	13
11	$\frac{\underline{1h}}{\underline{1i}}$ OMe	Pd(II)	Pt	4.5	63	20

a) Pd(II): $Pd(II)C1_2(Ph_3P)_2$ (0.07 equiv.)- $Ph_3P(0.14$ equiv.); Pd(0): $Pd(0)(Ph_3P)_4$ (0.07 equiv.). b) Unless otherwise noted, regulated dc power (2.5 mA/cm²) was supplied until most of 1 was consumed. c) Isolated yields after column chromatography on SiO_2 (hexane/EtOAc: 10/1).

d) Bromide 1d (33%) was recovered. e) Chloride 1e (66%) was recovered.

As a further extention of this idea, we investigated a similar electro-reductive carboxylation mediated with σ -vinyl or π -allyl Pd complex. Thus, electroreductive carboxylation of vinyl bromide 7 was carried out in a Pd(II) catalyst-DMF-Et₄NOTs-(Pb cathode) system under bubbling CO₂ gas. Passage of 4.5 F/mol of electricity afforded dicarboxylic acid 9 (36%), which would be formed via the primary product 8 (Scheme 2). Actually, electrolysis of the α,β -unsaturated carboxylic acid 8 (tetrabutylammonium salt) in a DMF-Et₄NOTs-(Pb electrode) afforded 9 (61%).

Ph Br
$$\xrightarrow{-e, CO_2}$$
 Ph \xrightarrow{COOH} $\xrightarrow{\frac{7}{2}}$ Ph \xrightarrow{COOH} $\xrightarrow{\frac{9}{2}}$ 36% from $\xrightarrow{7}$

Scheme 2. 61% from 8

Next, the Pd(0)-catalyzed electroreductive carboxylation was applied to the carboxylation of allyl acetates 10 and 13 in a Pd(II) catalyst- $CH_3CN-Et_4NOTs-(Pb cathode)$ system (Scheme 3). Passage of 3 F/mol of electricity afforded a mixture of carboxylic acids 11 and 12 (Scheme 3) presumably arising from the same intermediate 14.

14.

Ph OAC
$$\xrightarrow{-e, CO_2}$$
 Ph $\xrightarrow{-e, CO_2}$ Ph $\xrightarrow{-e, CO_2}$ Ph $\xrightarrow{11}$ (40%) $\xrightarrow{12}$ (36%)

OAC $\xrightarrow{-e, CO_2}$ $\xrightarrow{11}$ (35%) + $\xrightarrow{12}$ (37%)

Ph OAC \xrightarrow{Ph} Pd (II)

Scheme 3.

References

- 1) S. Torii, H. Tanaka, and K. Morisaki, Tetrahedron Lett., 41, 1655(1985).
- 2) N. L. Weinberg, "Technique of Electroorganic Synthesis," Wiley-Interscience, New York (1975), Part II, p. 189; P. Fuchs, U. Hess, H. H. Holst, and H. Lund, Acta Chem. Scand., Ser.B, 35, 185 (1981); F. Barba, A. Guirado, and A. Zapata, Electrochim. Acta, 27, 1335 (1982); T. Matsue, S. Kitahara, and T. Osa, Denki Kagaku, 50, 732 (1982); O. Sock, M. Troupel, and J. Perichon, Tetrahedron Lett., 26, 1509 (1985).
- 3) M. Troupel, Y. Rollin, J. Perichon, and J. F. Fauvarque, Nouv. J. Chim., $\underline{5}$, 621 (1981); J. F. Fauvarque, C. Chevot, A. Jutand, M. Francois, and J. Perichon, J. Organomet. Chem., $\underline{264}$, 273 (1984).
- 4) Electroreduction of $Pd(II)C1_2(Ph_3P)_2$ took place at -0.3 V vs. Ag/Ag^+ .
- 5) P. Fitton and E. A. Rick, J. Organomet. Chem., 28, 287 (1971).
- 6) E. Lamy, L. Nadjo, and J. M. Saveant, Nouv. J. Chim., 3, 21 (1979). (Received October 29,1985)